Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.469
Filtrar
1.
Influenza Other Respir Viruses ; 18(3): e13271, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501305

RESUMO

BACKGROUND: Although influenza viruses cause only one-fifth of severe acute respiratory infections (SARI) in Burkina Faso, the other viral causes of SARI remain poorly investigated to inform clinical and preventive decision making. METHODS: Between 2016 and 2019, we prospectively enrolled inpatients meeting the World Health Organization (WHO) case definition of SARI in Burkina Faso. Results of viral etiologies among inpatients tested negative for influenza using the Fast Track Diagnostics Respiratory Kits (FTD-33) were reported. RESULTS: Of 1541 specimens tested, at least one respiratory virus was detected in 76.1% of the 1231 specimens negative for influenza virus. Human rhinoviruses (hRVs) were the most detected pathogens (476; 38.7%), followed by human adenoviruses (hAdV) (17.1%, 210/1231), human respiratory syncytial virus (hRSV) (15.4%, 189/1231), enterovirus (EnV) (11.2%, 138/1231), human bocavirus (hBoV) (7.9%, 97/1231), parainfluenza 3 (hPIV3) (6.1%, 75/1231), human metapneumovirus (hMPV) (6.0%,74/1321), parainfluenza 4 (hPIV4) (4.1%, 51/1231), human coronavirus OC43 (hCoV-OC43) (3.4%, 42/1231), human coronavirus HKU1(hCoV-HKU1) (2.7%, 33/1231), human coronavirus NL63 (hCoV-NL63) (2.5%, 31/1231), parainfluenza 1 (hPIV1) (2.0%, 25/1231), parainfluenza 2 (hPIV2) (1.8%, 22/1231), human parechovirus (PeV) (1.1%, 14/1231), and human coronavirus 229E (hCoV-229E) (0.9%, 11/1231). Among SARI cases, infants aged 1-4 years were mostly affected (50.7%; 622/1231), followed by those <1 year of age (35.7%; 438/1231). Most detected pathogens had year-long circulation patterns, with seasonal peaks mainly observed during the cold and dry seasons. CONCLUSION: Several non-influenza viruses are cause of SARI in Burkina Faso. The integration of the most common pathogens into the routine influenza surveillance system might be beneficial.


Assuntos
Enterovirus , Influenza Humana , Orthomyxoviridae , Infecções por Paramyxoviridae , Pneumonia , Infecções Respiratórias , Vírus , Lactente , Humanos , Influenza Humana/epidemiologia , Infecções Respiratórias/epidemiologia , Burkina Faso/epidemiologia , Orthomyxoviridae/genética , Betacoronavirus , Infecções por Paramyxoviridae/epidemiologia
2.
Nat Commun ; 15(1): 1064, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316757

RESUMO

The current model is that the influenza virus polymerase (FluPol) binds either to host RNA polymerase II (RNAP II) or to the acidic nuclear phosphoprotein 32 (ANP32), which drives its conformation and activity towards transcription or replication of the viral genome, respectively. Here, we provide evidence that the FluPol-RNAP II binding interface, beyond its well-acknowledged function in cap-snatching during transcription initiation, has also a pivotal role in replication of the viral genome. Using a combination of cell-based and in vitro approaches, we show that the RNAP II C-terminal-domain, jointly with ANP32, enhances FluPol replication activity. We observe successive conformational changes to switch from a transcriptase to a replicase conformation in the presence of the bound RNPAII C-terminal domain and propose a model in which the host RNAP II is the anchor for transcription and replication of the viral genome. Our data open new perspectives on the spatial coupling of viral transcription and replication and the coordinated balance between these two activities.


Assuntos
Orthomyxoviridae , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , RNA Viral/genética , Orthomyxoviridae/genética , RNA Polimerases Dirigidas por DNA , Replicação Viral/genética
3.
Hum Vaccin Immunother ; 20(1): 2292381, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193304

RESUMO

Purified subunit viral antigens are weakly immunogenic and stimulate only the antibody but not the T cell-mediated immune response. An alternative approach to inducing protective immunity with small viral peptides may be the targeting of viral epitopes to immunocompetent cells by DNA and protein-engineered vaccines. This review will focus on DNA and protein-generated chimeric molecules carrying engineered fragments specific for activating cell surface co-receptors for inducing protective antiviral immunity. Adjuvanted protein-based vaccine or DNA constructs encoding simultaneously T- and B-cell peptide epitopes from influenza viral hemagglutinin, and scFvs specific for costimulatory immune cell receptors may induce a significant increase of anti-influenza antibody levels and strong CTL activity against virus-infected cells in a manner that mimics the natural infection. Here we summarize the development of several DNA and protein chimeric constructs carrying influenza virus HA317-41 fragment. The generated engineered molecules were used for immunization in intact murine and experimentally humanized NSG mouse models.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Vacinas contra Influenza/genética , Epitopos de Linfócito B , DNA , Orthomyxoviridae/genética
4.
Arch Virol ; 169(2): 29, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216710

RESUMO

Genetic reassortment of avian, swine, and human influenza A viruses (IAVs) poses potential pandemic risks. Surveillance is important for influenza pandemic preparedness, but the susceptibility of zoonotic IAVs to the cap-dependent endonuclease inhibitor baloxavir acid (BXA) has not been thoroughly researched. Although an amino acid substitution at position 38 in the polymerase acidic protein (PA/I38) in seasonal IAVs reduces BXA susceptibility, PA polymorphisms at position 38 are rarely seen in zoonotic IAVs. Here, we examined the impact of PA/I38 substitutions on the BXA susceptibility of recombinant A(H5N1) viruses. PA mutants that harbored I38T, F, and M were 48.2-, 24.0-, and 15.5-fold less susceptible, respectively, to BXA than wild-type A(H5N1) but were susceptible to the neuraminidase inhibitor oseltamivir acid and the RNA polymerase inhibitor favipiravir. PA mutants exhibited significantly impaired replicative fitness in Madin-Darby canine kidney cells at 24 h postinfection. In addition, in order to investigate new genetic markers for BXA susceptibility, we screened geographically and temporally distinct IAVs isolated worldwide from birds and pigs. The results showed that BXA exhibited antiviral activity against avian and swine viruses with similar levels to seasonal isolates. All viruses tested in the study lacked the PA/I38 substitution and were susceptible to BXA. Isolates harboring amino acid polymorphisms at positions 20, 24, and 37, which have been implicated in the binding of BXA to the PA endonuclease domain, were also susceptible to BXA. These results suggest that monitoring of the PA/I38 substitution in animal-derived influenza viruses is important for preparedness against zoonotic influenza virus outbreaks.


Assuntos
Dibenzotiepinas , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Morfolinas , Orthomyxoviridae , Piridonas , Tiepinas , Triazinas , Animais , Cães , Humanos , Suínos , Vírus da Influenza A/genética , Oxazinas/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Virus da Influenza A Subtipo H5N1/genética , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Orthomyxoviridae/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Substituição de Aminoácidos , Endonucleases/genética , Farmacorresistência Viral/genética
5.
Nucleic Acids Res ; 52(D1): D798-D807, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889020

RESUMO

Influenza viruses undergo frequent genomic mutations, leading to potential cross-species transmission, phenotypic changes, and challenges in diagnostic reagents and vaccines. Accurately evaluating and predicting the risk of such variations remain significant challenges. To address this, we developed the VarEPS-Influ database, an influenza virus variations risk evaluation system (VarEPS-Influ). This database employs a 'multi-dimensional evaluation of mutations' strategy, utilizing various tools to assess the physical and chemical properties, primary, secondary, and tertiary structures, receptor affinity, antibody binding capacity, antigen epitopes, and other aspects of the variation's impact. Additionally, we consider space-time distribution, host species distribution, pedigree analysis, and frequency of mutations to provide a comprehensive risk evaluation of mutations and viruses. The VarEPS-Influ database evaluates both observed variations and virtual variations (variations that have not yet occurred), thereby addressing the time-lag issue in risk predictions. Our current one-stop evaluation system for influenza virus genomic variation integrates 1065290 sequences from 224 927 Influenza A, B and C isolates retrieved from public resources. Researchers can freely access the data at https://nmdc.cn/influvar/.


Assuntos
Bases de Dados Genéticas , Influenza Humana , Orthomyxoviridae , Humanos , Anticorpos/genética , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Mutação , Orthomyxoviridae/genética , Variação Genética , Genoma Viral , Medição de Risco
6.
Virology ; 589: 109914, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931589

RESUMO

Viruses in the thogotovirus genus of the family Orthomyxoviridae are much less well-understood than influenza viruses despite documented zoonotic transmission and association with human disease. This study therefore developed a cell-cell fusion assay and three pseudotyping tools and used them to assess envelope function and cell tropism. Envelope glycoproteins of Dhori (DHOV), Thogoto (THOV), Bourbon, and Sinu viruses were all revealed to exhibit pH-dependent triggering of membrane fusion. Lentivirus vectors were robustly pseudotyped with these glycoproteins while influenza virus vectors showed pseudotyping compatibility, albeit at lower efficiencies. Replication-competent vesicular stomatitis virus expressing DHOV or THOV glycoproteins were also successfully generated. These pseudotyped viruses mediated entry into a wide range of mammalian cell lines, including human primary cells. The promiscuousness of these viruses suggests the use of a relatively ubiquitous receptor and their entry into numerous mammalian cells emphasize their high potential as veterinary and zoonotic diseases.


Assuntos
Orthomyxoviridae , Thogotovirus , Animais , Humanos , Thogotovirus/genética , Glicoproteínas/genética , Orthomyxoviridae/genética , Lentivirus/genética , Linhagem Celular , Vetores Genéticos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Mamíferos
7.
Methods Mol Biol ; 2733: 87-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38064028

RESUMO

The piscine orthomyxovirus called infectious salmon anemia virus (ISAV) is one of the most important emerging pathogens affecting the salmon industry worldwide. The first reverse genetics system for ISAV, which allows the generation of recombinant ISA virus (rISAV), is an important tool for the characterization and study of this virus. The plasmid-based reverse genetics system for ISAV includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). The salmon, viral, and mammalian genetic elements included in the pSS-URG vectors allow the expression of the eight viral RNA segments. In addition to four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex, the eight pSS-URG vectors allowed the generation of infectious rISAV in salmon cells.


Assuntos
Doenças dos Peixes , Isavirus , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Isavirus/genética , DNA Complementar/genética , Linhagem Celular , Orthomyxoviridae/genética , RNA Viral/genética , Infecções por Orthomyxoviridae/veterinária , Salmão/genética , Mamíferos/genética
8.
Nat Commun ; 14(1): 8145, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066000

RESUMO

Tilapia Lake Virus (TiLV), a recently discovered pathogen of tilapia fish, belongs to the Amnoonviridae family from the Articulavirales order. Its ten genome segments have characteristic conserved ends and encode proteins with no known homologues, apart from the segment 1, which encodes an orthomyxo-like RNA-dependent-RNA polymerase core subunit. Here we show that segments 1-3 encode respectively the PB1, PB2 and PA-like subunits of an active heterotrimeric polymerase that maintains all domains found in the distantly related influenza polymerase, despite an unprecedented overall size reduction of 40%. Multiple high-resolution cryo-EM structures of TiLV polymerase in pre-initiation, initiation and active elongation states, show how it binds the vRNA and cRNA promoters and performs RNA synthesis, with both transcriptase and replicase configurations being characterised. However, the highly truncated endonuclease-like domain appears inactive and the putative cap-binding domain is autoinhibited, emphasising that many functional aspects of TiLV polymerase remain to be elucidated.


Assuntos
Doenças dos Peixes , Orthomyxoviridae , Tilápia , Vírus , Animais , Tilápia/genética , Orthomyxoviridae/genética , Vírus/genética , RNA
9.
Vopr Virusol ; 68(6): 526-535, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38156568

RESUMO

INTRODUCTION: Polymerase proteins PB1 and PB2 determine the cold-adapted phenotype of the influenza virus A/Krasnodar/101/35/59 (H2N2), as was shown earlier. OBJECTIVE: The development of the reporter construct to determine the activity of viral polymerase at 33 and 37 °C using the minigenome method. MATERIALS AND METHODS: Co-transfection of Cos-1 cells with pHW2000 plasmids expressing viral polymerase proteins PB1, PB2, PA, NP (minigenome) and reporter construct. RESULTS: Based on segment 8, two reporter constructs were created that contain a direct or inverted NS1-GFP-NS2 sequence for the expression of NS2 and NS1 proteins translationally fused with green fluorescent protein (GFP), which allowed the evaluation the transcriptional and/or replicative activity of viral polymerase. CONCLUSION: Polymerase of virus A/Krasnodar/101/35/59 (H2N2) has higher replicative and transcriptional activity at 33 °C than at 37 °C. Its transcriptional activity is more temperature-dependent than its replicative activity. The replicative and transcriptional activity of polymerase A/Puerto Rico/8/34 virus (H1N1, Mount Sinai variant) have no significant differences and do not depend on temperature.


Assuntos
Influenzavirus A , Vírus da Influenza A Subtipo H1N1 , Orthomyxoviridae , Vírus da Influenza A Subtipo H1N1/genética , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Temperatura , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo
10.
Viruses ; 15(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38140686

RESUMO

Influenza D virus (IDV) can infect various livestock animals, such as cattle, swine, and small ruminants, and was shown to have zoonotic potential. Therefore, it is important to identify viral factors involved in the broad host tropism and identify potential antiviral compounds that can inhibit IDV infection. Recombinant reporter viruses provide powerful tools for studying viral infections and antiviral drug discovery. Here we present the generation of a fluorescent reporter IDV using our previously established reverse genetic system for IDV. The mNeonGreen (mNG) fluorescent reporter gene was incorporated into the IDV non-structural gene segment as a fusion protein with the viral NS1 or NS2 proteins, or as a separate protein flanked by two autoproteolytic cleavage sites. We demonstrate that only recombinant reporter viruses expressing mNG as an additional separate protein or as an N-terminal fusion protein with NS1 could be rescued, albeit attenuated, compared to the parental reverse genetic clone. Serial passaging experiments demonstrated that the mNG gene is stably integrated for up to three passages, after which internal deletions accumulate. We conducted a proof-of-principle antiviral screening with the established fluorescent reporter viruses and identified two compounds influencing IDV infection. These results demonstrate that the newly established recombinant IDV reporter virus can be applied for antiviral drug discovery and monitoring viral replication, adding a new molecular tool for investigating IDV.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Bovinos , Animais , Suínos , Humanos , Influenza Humana/genética , 60548 , Thogotovirus/genética , Orthomyxoviridae/genética , Proteínas Virais/genética , Genes Reporter , Antivirais/farmacologia
11.
Proc Natl Acad Sci U S A ; 120(45): e2310529120, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37906647

RESUMO

The emergence of previously unknown disease-causing viruses in mammals is in part the result of a long-term evolutionary process. Reconstructing the deep phylogenetic histories of viruses helps identify major evolutionary transitions and contextualizes the emergence of viruses in new hosts. We used a combination of total RNA sequencing and transcriptome data mining to extend the diversity and evolutionary history of the RNA virus order Articulavirales, which includes the influenza viruses. We identified instances of Articulavirales in the invertebrate phylum Cnidaria (including corals), constituting a novel and divergent family that we provisionally named the "Cnidenomoviridae." We further extended the evolutionary history of the influenza virus lineage by identifying four divergent, fish-associated influenza-like viruses, thereby supporting the hypothesis that fish were among the first hosts of influenza viruses. In addition, we substantially expanded the phylogenetic diversity of quaranjaviruses and proposed that this genus be reclassified as a family-the "Quaranjaviridae." Within this putative family, we identified a novel arachnid-infecting genus, provisionally named "Cheliceravirus." Notably, we observed a close phylogenetic relationship between the Crustacea- and Chelicerata-infecting "Quaranjaviridae" that is inconsistent with virus-host codivergence. Together, these data suggest that the Articulavirales has evolved over at least 600 million years, first emerging in aquatic animals. Importantly, the evolution of the Articulavirales was likely shaped by multiple aquatic-terrestrial transitions and substantial host jumps, some of which are still observable today.


Assuntos
Influenza Humana , Orthomyxoviridae , Vírus de RNA , Animais , Humanos , Filogenia , Vírus de RNA/genética , Invertebrados/genética , Orthomyxoviridae/genética , RNA , Evolução Molecular , RNA Viral/genética , Mamíferos/genética
12.
J Virol ; 97(10): e0105623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830816

RESUMO

IMPORTANCE: The number of known virus species has increased dramatically through metagenomic studies, which search genetic material sampled from a host for non-host genes. Here, we focus on an important viral family that includes influenza viruses, the Orthomyxoviridae, with over 100 recently discovered viruses infecting hosts from humans to fish. We find that one virus called Wǔhàn mosquito virus 6, discovered in mosquitoes in China, has spread across the globe very recently. Surface proteins used to enter cells show signs of rapid evolution in Wǔhàn mosquito virus 6 and its relatives which suggests an ability to infect vertebrate animals. We compute the rate at which new orthomyxovirus species discovered add evolutionary history to the tree of life, predict that many viruses remain to be discovered, and discuss what appropriately designed future studies can teach us about how diseases cross between continents and species.


Assuntos
Genoma Viral , Orthomyxoviridae , Evolução Molecular , Orthomyxoviridae/genética , Filogenia , Metagenômica
13.
Nat Rev Microbiol ; 21(12): 805-817, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37532870

RESUMO

Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health. In this Review, we synthesize recent progress made in understanding the interplay between the evolution of immunity induced by previous infections or vaccination and the evolution of seasonal influenza viruses driven by the heterogeneous accumulation of antibody-mediated immunity in humans. We discuss the functional constraints that limit the evolution of the viruses, the within-host evolutionary processes that drive the emergence of new virus variants, as well as current and prospective options for influenza virus control, including the viral and immunological barriers that must be overcome to improve the effectiveness of vaccines and antiviral drugs.


Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , Influenza Humana/epidemiologia , Estações do Ano , Estudos Prospectivos , Orthomyxoviridae/genética , Vacinação
14.
Ann Clin Microbiol Antimicrob ; 22(1): 43, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37264437

RESUMO

BACKGROUND: Bacterial and viral infections are commonly implicated in the development of pneumonia. We aimed to compare the diversity and composition of lung bacteria among severe pneumonia patients who were influenza virus positive (IFVP) and influenza virus negative (IFVN). METHODS: Bronchoalveolar lavage fluid specimens were procured from patients diagnosed with severe pneumonia to investigate the microbiome utilizing 16S-rDNA sequencing. The alpha diversity of the microbiome was evaluated employing Chao1, Shannon, and Simpson indexes, while the beta diversity was assessed using principal component analysis and principal coordinate analysis. Linear discriminant analysis effect size (LEfSe) was employed to determine the taxonomic differences between the IFVP and IFVN groups. RESULTS: A total of 84 patients with 42 in the IFVP group and 42 in the IFVN group were enrolled. Slightly higher indexes of Shannon and Simpson were observed in the IFVP group without statistically significant difference. The dominant bacterial genera were Streptococcus, Klebsiella, Escherichia-Shigella in the IFVN group and Acinetobacter, Streptococcus, Staphylococcus in the IFVP group. Streptococcus pneumoniae and Acinetobacter baumannii were the most abundant species in the IFVN and IFVP groups, respectively. LEfSe analysis indicated a greater abundance of Klebsiella in the IFVN group. CONCLUSIONS: Individuals with severe pneumonia infected with IFV exhibit heightened susceptibility to certain bacteria, especially Acinetobacter baumannii, and the underlying mechanism of the interaction between IFV and Acinetobacter baumannii in the progression of pneumonia needs further investigation.


Assuntos
Doenças Transmissíveis , Influenza Humana , Microbiota , Orthomyxoviridae , Pneumonia , Humanos , Adulto , Influenza Humana/complicações , Pulmão , Bactérias/genética , Klebsiella/genética , Orthomyxoviridae/genética , RNA Ribossômico 16S/genética
15.
J Biomed Inform ; 142: 104388, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178781

RESUMO

Influenza viruses pose great threats to public health and cause enormous economic losses every year. Previous work has revealed the viral factors associated with the virulence of influenza viruses in mammals. However, taking prior viral knowledge represented by heterogeneous categorical and discrete information into account to explore virus virulence is scarce in the existing work. How to make full use of the preceding domain knowledge in virulence study is challenging but beneficial. This paper proposes a general framework named ViPal for virulence prediction in mice that incorporates discrete prior viral mutation and reassortment information based on all eight influenza segments. The posterior regularization technique is leveraged to transform prior viral knowledge into constraint features and integrated into the machine learning models. Experimental results on influenza genomic datasets validate that our proposed framework can improve virulence prediction performance over baselines. The comparison between ViPal and other existing methods shows the computational efficiency of our framework with comparable or superior performance. Moreover, the interpretable analysis through SHAP (SHapley Additive exPlanations) identifies the scores of constraint features contributing to the prediction. We hope this framework could provide assistance for the accurate detection of influenza virulence and facilitate flu surveillance.


Assuntos
Influenza Humana , Orthomyxoviridae , Animais , Camundongos , Humanos , Virulência/genética , Mutação , Orthomyxoviridae/genética , Genômica , Mamíferos
16.
PLoS Comput Biol ; 19(5): e1011174, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37235589

RESUMO

The entry of influenza virus into the host cell requires fusion of its lipid envelope with the host membrane. It is catalysed by viral hemagglutinin protein, whose fragments called fusion peptides become inserted into the target bilayer and initiate its merging with the viral membrane. Isolated fusion peptides are already capable of inducing lipid mixing between liposomes. Years of studies indicate that upon membrane binding they form bend helical structure whose degree of opening fluctuates between tightly closed hairpin and an extended boomerang. The actual way in which they initiate fusion remains elusive. In this work we employ atomistic simulations of wild type and fusion inactive W14A mutant of influenza fusion peptides confined between two closely apposed lipid bilayers. We characterise peptide induced membrane perturbation and determine the potential of mean force for the formation of the first fusion intermediate, an interbilayer lipid bridge called stalk. Our results demonstrate two routes through which the peptides can lower free energy barrier towards fusion. The first one assumes peptides capability to adopt transmembrane configuration which subsequently promotes the creation of a stalk-hole complex. The second involves surface bound peptide configuration and proceeds owing to its ability to stabilise stalk by fitting into the region of extreme negative membrane curvature resulting from its formation. In both cases, the active peptide conformation corresponds to tight helical hairpin, whereas extended boomerang geometry appears to be unable to provide favourable thermodynamic effect. The latter observation offers plausible explanation for long known inactivity of boomerang-stabilising W14A mutation.


Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Peptídeos/química , Bicamadas Lipídicas/química , Orthomyxoviridae/genética , Fusão de Membrana , Fragmentos de Peptídeos/química
17.
Signal Transduct Target Ther ; 8(1): 149, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029123

RESUMO

Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.


Assuntos
Doenças Transmissíveis , Orthomyxoviridae , Vacinas Virais , Animais , Humanos , Vacinas Virais/genética , Vacinas Virais/uso terapêutico , Vetores Genéticos , Orthomyxoviridae/genética , Adenoviridae/genética
18.
Nat Commun ; 14(1): 2304, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085480

RESUMO

Nuclear export of influenza A virus (IAV) mRNAs occurs through the nuclear pore complex (NPC). Using the Auxin-Induced Degron (AID) system to rapidly degrade proteins, we show that among the nucleoporins localized at the nucleoplasmic side of the NPC, TPR is the key nucleoporin required for nuclear export of influenza virus mRNAs. TPR recruits the TRanscription and EXport complex (TREX)-2 to the NPC for exporting a subset of cellular mRNAs. By degrading components of the TREX-2 complex (GANP, Germinal-center Associated Nuclear Protein; PCID2, PCI domain containing 2), we show that influenza mRNAs require the TREX-2 complex for nuclear export and replication. Furthermore, we found that cellular mRNAs whose export is dependent on GANP have a small number of exons, a high mean exon length, long 3' UTR, and low GC content. Some of these features are shared by influenza virus mRNAs. Additionally, we identified a 45 nucleotide RNA signal from influenza virus HA mRNA that is sufficient to mediate GANP-dependent mRNA export. Thus, we report a role for the TREX-2 complex in nuclear export of influenza mRNAs and identified RNA determinants associated with the TREX-2-dependent mRNA export.


Assuntos
Transporte Ativo do Núcleo Celular , Influenza Humana , Orthomyxoviridae , Transporte de RNA , Humanos , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Influenza Humana/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Orthomyxoviridae/genética , Transporte de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...